
Love Polygon ♥
In essence, we have a directed graph where each vertex has exactly one outgoing arc. We are
asked to redirect some of the arcs so that each vertex is in a “pair” and we are asked to do it with
the minimum number of redirects. This type of graph, called a “functional graph”, inevitably
takes the form where each connected component is a directed cycle with directed trees branching
off of it.

Note that some sort of solution is always possible if N is even, and always impossible if N
is odd. Therefore, if N is odd we can immediately output -1. The following explanations deal
with the case where N is even.

Subtask 1

Let G be the set of all people; let S be a subset of G and let T = G \S. In order for S to be the
set of people ♥-shot in any solution, the following conditions must hold:

• If we remove the edges originating from people in S, all connected components in the result-
ing graph must have at most 2 vertices. This is because the final graph can be constructed
by only adding edges to this graph, and in the final graph all connected components have
2 vertices.

• No person who loves themselves can be in T , because then they will love themselves in the
final arrangement, which is not permitted.

If these conditions hold, S can be used to construct a solution by pairing off the people in
connected components of size 2 and pairing everyone else off randomly. |S| arrows will be used.
Therefore, a set S can be the set of people shot if and only if those conditions are met.

To solve the problem, we can iterate over all sets S and check for this property, then pick
the smallest fitting set S∗ and output |S∗|. There are 2N subsets of G, checking each set can be
done in O(N) time. The complexity is therefore O(N2N).

An alternative approach is to use dynamic programming on subsets in O(N2N) time.

Subtask 2

In order for everyone to be loved by someone, everyone must be loved by exactly one person. In
this subtask, each connected component of the graph takes the form of a cycle. Let’s process
each component separately, let C be the number of vertices in the component. It is easy to see
that if the component has an even number of vertices, then it is optimal to pair each vertex off
with one of its neighbours, using C

2 arrows, unless the component has 2 vertices, in which case
no arrows are needed. On the other hand, if the component has an odd number of vertices, then
it is optimal to pair each vertex but one off with one of its neighbours, pairing the last vertex off
with a vertex outside of that component, using

⌊
C
2

⌋
+ 1 arrows. The problem can be solved in

O(N) time by counting the vertices in each component.

Subtask 3

Since there are no “love polygon”, that must mean the cycle in each connected component of the
graph consists of one character loving themselves. This means each connected component takes
the form of a directed tree with all edges directed towards the root.

We call a set of vertices T in the forest lucky if and only if:

1

• For each vertex in T , its parent is not in T ;

• For each vertex in T , none of its children are in T ;

• For each vertex in T , none of its siblings are in T .

Let S∗ be the set of vertices that are not shot with a love arrow in the optimal solution. Then S∗

is clearly a lucky set: any character in that set will end up in a relationship with the character
they initially loved; that is, they will be paired off with their parent in the tree. Let v be in S∗,
then:

• The parent of v must be shot with an arrow to love v. Therefore the parent of v is not in
S∗.

• All children of v must be shot with an arrow, otherwise they would end up in a pair with
v, but we know v will be paired off with its parent. Therefore no children of v are in S∗.

• All siblings of v must be shot with an arrow, otherwise they would end up in a pair with
the parent of v, but we know the parent of v will be paired off with v. Therefore no siblings
of v are in S∗.

Hence, S∗ is a lucky set. Note that the number of love arrows required is N −|S∗|. Furthermore,
given any lucky set S that doesn’t contain roots, we can construct a solution using N − |S|
arrows by pairing the vertices in S off with their parents and pairing everyone else off randomly.
Therefore, if we define R as the set of lucky sets that don’t contain roots, the solution to the
problem is

min
S∈R

(N − |S|) = N −max
S∈R
|S|. (1)

Our task is therefore to calculate the size of the largest lucky set that doesn’t contain any roots.
This can be done using dynamic programming.

Let Lv denote the set of initial lovers (children) of vertex v, excluding vertex v itself if v is a
root. Define:

• mls(v) to be the size of the maximum lucky set within the subtree of v whose member v
itself is not.

• mls(v) to be the size of the maximum lucky set within the subtree of v whose member v
itself is.

The size of the largest lucky set is then
∑

mls(r) over all roots r. If vertex v is a leaf, then
clearly mls(v) = 0 and mls(v) = 1. Let v be a nonleaf vertex. Then the equation

mls(v) = 1 +
∑
u∈Lv

mls(u) (2)

clearly holds. Lucky sets within the subtree of v that don’t contain the vertex v can either:

• Not contain any of the children of v. The largest of them has size
∑
u∈Lv

mls(u).

• Contain exactly one of the children of v. The largest lucky set containing w, a child of v,
has size

(∑
u∈Lv

mls(u)
)

+ mls(w)−mls(w).

2

All those kinds of lucky sets exist, the largest of them has therefore size

max

{∑
u∈Lv

mls(u), max
w∈Lv

((∑
u∈Lv

mls(u)

)
+ mls(w)−mls(w)

)}
=

= max

{∑
u∈Lv

mls(u),
∑
u∈Lv

mls(u) + max
w∈Lv

(
mls(w)−mls(w)

)}
=

= max

{
mls(v)− 1, mls(v)− 1 + max

w∈Lv

(
mls(w)−mls(w)

)}
=

= max

{
0, max

w∈Lv

(
mls(w)−mls(w)

)}
+ mls(v)− 1.

Therefore,

mls(v) = max

{
0, max

w∈Lv

(
mls(w)−mls(w)

)}
+ mls(v)− 1. (3)

To sum it up, for any vertex v:

mls(v) =

0, if v is a leaf;

max

{
0, max

w∈Lv

(
mls(w)−mls(w)

)}
+ mls(v)− 1 otherwise

(4)

and

mls(v) =

1, if v is a leaf;

1 +
∑
u∈Lv

mls(u) otherwise (5)

hold. Using those recurrences, we can iterate over all connected components of the graph, do
a depth-first search on them and calculate the values of mls(v) and mls(v) for all vertices v.
Finally, we can output N − (

∑
mls(r)) over all roots r. Each vertex needs to be traversed only

once, which gives a runtime of O(N).

Subtask 4

The subtask is solved similarly to subtask 3. We will process each connected component sepa-
rately. If the cycle of the current component consists of just one character, we will process it the
same way as in subtask 3. If the cycle is longer, we pick one arbitrary character. In the optimal
solution, that character either is in a relationship with the person they love, or isn’t. In both
cases we can eliminate some arcs from the component so that the component becomes a forest
of directed trees. Using the solution from subtask 4, we can calculate the number of love arrows
needed in both situations and pick the better one. This solves the subtask in O(N). ♥

Martian DNA

Subtask 1

Let s = s1s2 . . . sN denote the DNA string. Given a substring t = sisi+1 . . . sj , we can check in
time O(N · R) whether it contains sufficiently many of all nucleobases, by simply looping over
each required nucleobase and counting how many occurrences there are of that nucleobase in
the substring. Suppose we have a function HasEnough(t) which returns true if the substring t

3

contains sufficiently many of all nucleobases. Then we can find the optimal substring by looping
over all substrings (there are

(
N+1
2

)
= O(N2) of them) and picking the shortest substring t such

that HasEnough(t) = true. The time complexity of this algorithm is O(N3R).

Subtask 2

If we do some precomputations we can actually compute the function HasEnough(t) in time
O(R). The idea is to use prefix sums, which means that we start by computing, for each required
nucleobase, how many times that nucleobase occurs in each prefix of the DNA, which allows us
to quickly compute how many times that nucleobase occurs in any substring. If we let countc(m)
denote the number of times the nucleobase c occurs in the prefix s1 . . . sm, then we can compute
how many times c occurs in the substring t = sisi+1, . . . , sj as countc(j)− countc(i− 1), which
only takes time O(1) per type of nucleobase. We can therefore check if we have enough of all
required nucleobases in time O(R).

The precomputation can be done in time O(NR), and then we can use the O(R) implemen-
tation of HasEnough to test all substrings in time O(N2R).

Subtask 3

The key realization needed to solve subtask 3, where N may be as large as 100000, is that
we don’t actually have to check all substrings. Instead, it would be sufficient to know, for each
i ∈ {1, . . . , N}, what is the minimum j such that the substring si . . . sj contains sufficiently many
of all nucleobases. We can find j using binary search, because whenever HasEnough(si . . . sj′)
returns true then we get an upper bound j ≤ j′, and whenever HasEnough(si . . . sj′) returns
false we get a lower bound j ≥ j′. If we also compute HasEnough using prefix sums then the
algorithm runs in time O(NR+NR logN) = O(NR logN).

Subtask 4

To solve the problem in timeO(N), we can use an approach based on two pointers. At all times we
keep track of a substring s` . . . sr. If HasEnough(s` . . . sr) = false then the substring is too small,
so we make it bigger by setting r ← r + 1. If, on the other hand, HasEnough(s` . . . sr) = true

then we might be able to make the substring smaller, so we set ` ← ` + 1. This way we only
have to check O(N) different substrings.

The problem is that precomputing all the prefix sums needed for HasEnough takes time
Θ(NR), which is too slow. However, we can exploit the fact that when we increment ` or r, the
substring s` . . . sr doesn’t change very much, so we can keep track of:

1. How many nucleobases there are of each type in the substring s` . . . sr.

2. How many of the required nucleobases that have too few occurrences in the substring
s` . . . sr.

Whenever we increment the left pointer `, we first decrement the number of nucleobases of type
s`, and if the number of nucleobases of that type becomes too small we also increment the number
of nucleobases with an insufficient number of occurrences.

Similarly, whenever we increment the right pointer r, we first increment the number of nucle-
obases of type sr+1, and if the number of nucleobases of that type becomes exactly the number
we need then we also decrement the number of nucleobases with an insufficient number of oc-
currences.

4

If we keep track of the number of nucleobases with too few occurrences, then we can implement
HasEnough(s` . . . sr) by simply checking if there are no nucleobases with too few occurrences,
which is a constant time operation. Hence this algorithm runs in O(N).

Worm Worries

This problem is really three problems in one, for the cases of one, two and three dimensions.
Most solutions work across any number of dimensions, but to get an optimal number of queries
(for testgroups 2, 4 and 6), the three cases required separate solutions.

1. For one dimension, we can first try something like a binary search. Let’s say we have a grid
of size N × 1× 1. We can reduce the problem to a smaller one as follows: ask for the value
of the middle two points, say H[N/2] and H[N/2 + 1]. If H[N/2] > H[N/2 + 1], then we
can reduce the problem to finding a local maximum of the first half of the array (including
element N/2), otherwise to the second half.

However, this uses 40 queries for N = 1 000 000, while testgroup 2 requires at most 35.
Getting to 35 queries another approach, based on the idea of golden section search.

Say we want to find a local maximum in the interval [a, b]. If a = b, then we just return
a. Otherwise, we might query two points m,m + 1, say in the middle of the interval,
and recursively find a local maximum in either [a,m] or [m+ 1, b], depending on which of
H[m], H[m + 1] is bigger. But we don’t need the queried points m,m + 1 to be adjacent:
suppose instead that we query two points x, y, x < y. Again, if H[x] > H[y], we can
recurse in [a, y − 1]; otherwise we recurse in [x + 1, b]. But when we recurse in [a, y − 1],
we already have one queried point in the interval, x, so we just need to query one point in
the next step. To see why this recursion will indeed produce a local maximum, note that
the the point you find in the end will be the best among all the queried points.

To find the right x, y to start with, we use the golden ratio φ = 1+
√
5

2 , or rather its

inverse
√
5−1
2 ≈ 0.618. If we let x = 0.618a + 0.382b (rounded to the nearest integer),

y = 0.382a+ 0.618b to start with, and recurse in [a, y− 1], then x ≈ 0.382a+ 0.618(y− 1),
so the points in the middle will always roughly form the same golden ratio.

This solution uses 29 ≈ logφN queries, whereas binary search would use 40 ≈ log2N .

2. For two dimensions, we can reuse some of the ideas of the binary search from the one-
dimension case. Let us ask about the values of a line that cuts the rectangle in two.
Consider the maximum of the values, and also query the two values to the left and right of
this maximum (assuming the cut is vertical). If they are both less or equal to the maximum
value, our point is a valid answer. Otherwise, we can recurse on a side where it increases.
Intuitively, if we then continued walking to larger and larger values, we could never again
cross the cutting line, because the value we walked to was larger than every value on it.
There are some subtleties to this, where we have to make sure to recurse on the side that
have the previously found maximal query value if that value is larger than the maximum
value on the cutting line – otherwise, a local maximum that we found in a subrectangle
may not be a local maximum of a full rectangle. Correctly implemented, though, this
solves subtasks 3 and 4, assuming you alternate vertical and horizontal splits. It can also
be generalized to 1 and 3 dimensions, solving subtasks 1 and 5.

3. One naive idea is to query points at random, and then print the best one, i.e. the one with
the highest humidity. Another naive idea is to start from a random point, query adjacent
points, and move in the direction of increasing humidity until you find a local maximum.

5

Neither of these ideas work very well in the worst case, but they can be combined into a
solution: First query Q/2 points at random. Then choose the best one, and move in the
direction of increasing humidity until you arrive at a local maximum.

Why does this work? Suppose in the first stage you find a point among the Q/12 best
points. Then as you move to better points, you will need at most Q/12 steps. For each
step, you might need to query 6 points (or 3 on average if you do this cleverly), so you will
need Q/12 · 6 = Q/2 queries in the second stage, i.e. Q queries in total. So we succeed if
we find a point among the Q/12 best points.

The probability of not finding one of these points is at most(
1− Q

12NMK

)Q/2
≈ exp

(
− Q

12NMK

Q

2

)
= exp

(
− Q2

24NMK

)
.

For group 6, this gives a probability of failure less than 1 in 1800. This solution will also
solve group 1, 3, and 5.

Fun facts about this problem:

• The grader for this task was 900 lines long, and implemented 14 different strategies for
(on-demand per query) test data generation. This included random test data, space-filling
curves, spirals, random line segment paths with slopes leading up to them, and fun 1d
functions like randomly rescaled

√
x and sawtooth functions.

• We had vague plans on extending the task to 4d, but scrapped them. If anyone wants code
for random space-filling curves in 4d, just ask.

• Apparently this problem has been fairly well studied by computer scientists, with regards
to upper and lower bounds. See for instance:

– https://arxiv.org/abs/quant-ph/0504085

– https://epubs.siam.org/doi/pdf/10.1137/S0097539704447237

6

https://arxiv.org/abs/quant-ph/0504085
https://epubs.siam.org/doi/pdf/10.1137/S0097539704447237

