
Alternating Current

Subtask 1

There are only 2M wirings, so when M ≤ 15 we can simply try all of them
and check if any wiring satisfies the constraints. To check a wiring, we can
go through all wires in each direction separately and for each wire mark the
segments that are covered by that wire. This yields an algorithm which runs in
time O(2MMN).

Subtask 4

No wire passes through the separator between segments 1 and N , so there is a
natural order on wires, namely by starting point. We’ll sort the wires according
to this measure, and go through them one by one and assign their directions
greedily.

When we see a wire, the choice is between assigning it clockwise and counter-
clockwise direction. If the maximum ending point assigned to clockwise wires
is greater than the maximum ending point assigned to counter-clockwise wires,
then we are strictly better off assigning it a counter-clockwise direction, since
clockwise and counter-clockwise directions are symmetrical. (Note that this
symmetry comes from our common starting point.) Otherwise, we may assign
it a clockwise wire. If we get any gaps, the answer is impossible, otherwise this
greedy solution will work.

Subtask 5

The main observation is that if one wire w covers only a subset of the segments
covered by another wire w′, then we can without loss of generality assign the
direction of w to be opposite the direction of w′, because assigning the direction
of w to be the same as the direction of w′ would accomplish nothing. Let us
therefore assign parents to as many of the wires as possible, in such a way that:

• If w′ is the parent of w then w covers a subset of the segments covered by
w′.

• A wire which is itself a parent has no parent.

By doing this we have partitioned the wires into two disjoint sets: The set of
parents and the set of nodes that have a parent. From now on we will focus on
the set of parents, which we denote by W.

No wire w in W covers only a subset of the segments covered by any other
wire w′ in W, because if that were the case we could have let w′ be the parent
of w. Instead, the wires in W partially overlap or are completely disjoint.

Let us now sort the wires inW by increasing start segment, and let w1, . . . , wk

be the sorted list of wires in W. Let us now prove the following lemma:

1



Lemma 1. Suppose that k is even and that there is a valid wiring. Then we
get a valid wiring by assigning the wires w1, w3, w5, . . . , wk−1 in one direction
and the wires w2, w4, w6, . . . , wk in the other direction.

Proof. Suppose, for the sake of contradiction, that there is some segment s
which is not covered in both directions when the wires w1, w3, w5, . . . , wk−1 are
assigned in one direction and the wires w2, w4, w6, . . . , wk are assigned in the
other. Since there exists a valid wiring, all segments must be covered by at least
one wire inW, so let us assume that wi covers s. If wi−1 or wi+1 covered s then s
would be covered by wires in both directions, and therefore wi must be the only
wire in W that covers s. This means that all other wires (not in W) covering s
must be children of wi, but then we would assign their directions to be opposite
the direction of wi, so s is again covered by wires in both directions.

Lemma 1 implies that in the case when k is even, we can simply use an
alternating assignment to the wires w1, . . . , wk and then check whether that
assignment is a valid one.

The case when k is odd is slightly harder. For this case we use the following
lemma:

Lemma 2. Suppose that k is odd and that there is a valid wiring. Then there is
an i such that we get a valid wiring if we assign the wires wi, wi+2, wi+4, . . . , wi−1
in one direction and the wires wi+1, wi+3, wi+5, . . . , wi−2 in the other direction,
where all indices are taken modulo k.

Proof. Consider a valid wiring. Since k is odd there exists an i such that the
valid wiring assigns the same direction to wi−1 and wi. We claim that we get
a valid wiring if we assign the wires wi, wi+2, wi+4, . . . , wi−1 in one direction
and the wires wi+1, wi+3, wi+5, . . . , wi−2 in the other direction. Suppose for the
sake of contradiction that there is some segment s which is not covered in both
directions by this wiring. Since there exists a valid wiring, s must be covered
by at least one wire wj in W.

Suppose that s is covered by wi−1 or wi. If s is also covered by wi−2 or
wi+1 then s is covered by wires in both directions, so we can assume that s is
not covered by wi−2 or wi+1. This means that all other wires containing s (not
in W) must be children of either wi−1 or wi, but then we would assign their
directions to be opposite the directions we assign to wi−1 and wi, so s is again
covered by wires in both directions.

Suppose that s is covered by some wire wj ∈ W, for j /∈ {i − 1, i}. If wj−1
or wj+1 also covered s then s would be covered by wires in both directions,
so let’s assume that wj is the only wire in W that covers s. Then all other
wires covering s must be children of wj , which means that they are assigned
directions opposite to the direction assigned to wj , so s is covered by wires in
both directions.

For subtask 3 it is sufficient to iterate through all possible values of i and
check the resulting wiring for each. For subtask 5 we need to be more clever. A

2



wiring that assigns the wires wi, wi+2, . . . , wi−1 in one direction and the wires
wi+1, wi+3, . . . , wi−2 in the other direction is valid if and only if

1. All segments are covered by at least one wire.

2. For all j /∈ {i−1, i}, the wires wj−1, wj , wj+1 and all their children together
cover, in both directions, all the segments covered by wj .

3. The wires wi−1, wi, wi+1, wi+2 and all their children together cover, in
both directions, all the segments covered by wi and wi+1.

The requirements 1 and 2 above are almost independent of the choice of i (except
that we require j /∈ {i − 1, i}), so when we change the value of i we only need
to check if requirement 3 is satisfied, which can be done in amortized constant
time over all choices of i.

The time complexity of the algorithm is dominated by the process of finding
parents of nodes and sorting the wires in W, which takes time O(M logM).

Genetics

This problem had a simple cubic solution, lots of potential for optimization, and
a nice probabilistic quadratic solution. We’ll describe the latter.

Let’s start by solving the problem for the binary alphabet case. In this case,
we can make the math slightly nicer: instead of having the letters A and C, we
use the numbers 1 and −1. Computing the difference between two DNA strings
a and b then becomes isomorphic to taking a dot product between two rows of
a matrix A, i.e., a sum of Ai,j ·Ai′,j for j = 1 . . .M (up to some constant factor
and linear rescaling – instead of wanting sums to equal K, we want them to
equal K ′ = M − 2K).

Now, what we want to check is that the dot products are K ′ for all rows
b = Ai′ 6=i. Rather doing this individually for all b, we will check the sum against
every other row at once. There are a bunch of different approaches for this, but
one nice way is to pick random values wi for each row, and then check that
the dot product against the combined sum

∑
i′ wi′Ai′ equals (

∑
i′ wi′ −wi) ·K ′

(where i is the row we’re checking).
In less abstract mathematical terms, and generalizing to larger alphabets,

we pick random wi for each row, and then for each column j and letter c ∈
{A,C,G, T}, compute Dc as the sum of wi for each row which has the letter
c in the j’th column. Then, we can check a row ai against every other by
computing the sum

∑
j

∑
d6=Ai,j

Dd. If this row is the answer, this equals K
times the sum of the other rows’ w’s, since it differs in exactly K positions from
each other row Ai′ , and the sum thus includes wi′ K times.

If the row isn’t the answer, it highly likely does not equal that. Changing
any w of a row that differed in something else than K positions would results
in a changed sum, and if we say do all the arithmetic modulo 264 we have a
probability of accidentally passing the test on the order of 2−50. Hence, the
solution passes with very close to 100% probability.

3



Interesting notes:

• Test data generation for this task was pretty tricky. For the naive solution
not to pass, we want almost all distances between rows to be K, but all
but one row should also have some other row with distance not K. The
only matrices that the authors are aware of where distances are all equal
are identity matrices (with N = M,K = 2), constant matrices (K = 0),
and generalized Hadamard matrices (N = M , K = N(1 − 1/A)), and
combinations of the three. Here A denotes the alphabet size. For a binary
alphabet, Hadamard matrices are defined to be matrices of {1, 0} with
N = M such that all rows differ in exactly N/2 positions. They are well
studied, and a simple construction of them is a recursive one: start with
the matrix

H =
[
1
]
,

and repeatedly replace H by [
H H
H H ⊕ 1

]
where H ⊕ 1 means H with all entries of H XORed by 1. This results in
a Hadamard matrix of any size which is a power of 2.

For alphabets of size 4 we can do something more complicated, with in-
stead replacing H by 

H H H H
H H ⊕ 1 H ⊕ 2 H ⊕ 3
H H ⊕ 2 H ⊕ 3 H ⊕ 1
H H ⊕ 3 H ⊕ 1 H ⊕ 2


Proof that this works is left as an exercise for the reader (the construction
is derived from the multiplication table for GF (4), for the mathematically
inclined).

Given matrices with all pairwise distances K, we can perturb the matrix in
various way to make the answer unique, e.g. duplicating rows or changing
bits of the matrix.

These complex constructions partly explain the constraints section – it is
difficult to construct Hadamard matrices for sizes that are not powers of
A for alphabet size A.

• There is also a fun sub-cubic solution: with the formulation that values
are in {−1, 1}, we can think of the problem simply as asking for a matrix
product A · AT , from where we can check which values are K. Matrix
multiplication can in theory be computed in O(n2.373) time, although in

4



practice the algorithms that do this are very non-trivial to implement and
have too high constant factors.

Paths

Subtask 1

To get the points for Subtask 1, it’s sufficient to write a bruteforce solution
that naively counts all possible valid paths. (See full solution below, but re-
move the parts regarding memoization and dynamic programming to make it
exponentially slow.)

Subtask 2

Since the number of colors was at most 3, the length of the path was also at
most 3; and thus either 2 or 3. Paths of length 2 are simple to count: they are
just the number of edges between nodes with different colors. Paths of length
3 require a bit more thought. One way we can handle them is by looping over
which node is in the middle of the path, and which colors the nodes at the start
and end of the path have. Then the number of paths that have this node in
the middle is the product of the number of neighbors of the first color and the
number of neighbors of the second color.

Subtask 3

This is a natural extension to subtask 2: instead of looping over which node is
in the middle of the path, we loop over which edge is in the middle. The rest
works exactly the same.

Subtask 4

Assume there’s a function f that gives the number of valid paths starting in a
certain node. Then the answer to the problem is the sum of f over all nodes.
The trick is to calculate f efficiently, as the input to the problem is quite large.

Let f take two parameters c (the current node) and C (a bitset indicating
the colors we have used so far, initially 0). Since the number of colors in a path
is at most 5, the number of possible such bitsets is 25 = 32. This means that
the number of possible combinations of parameters to f(c, C) is small enough
to make a lookup table: we can use dynamic programming.

Memoizing on parameters c and C, we implement f(c, C) by summing
f(c′, C ′) for all neighbours c′ of c, and where C ′ is the same bitset as C but
with the color bit of c marked. We make sure to not take any paths where we
reuse a color, and we make sure to not calculate answers for states that we have
previously calculated. Given this, the answer to the problem is

∑
f(i, 0) (make

sure to not count paths of length 1!). Also remember to use 64-bit integer types.

5



This yields a time complexity of O(2KN).

Interesting note: the problem was essentially about counting paths of length
at most k, given that all nodes need to have different colors. This is a much
simpler than counting all paths of length at most k! The naive time complexity
of the latter is on the order of nk rather than 2kn. This can be used as a gen-
eral algorithmic technique to speed up various problems: pick colors randomly
a bunch of times (say, O((log n)k) times), then use an algorithm that restricts
nodes to have different colors.

6


