
A. Simple Arithmetic

This problem was trickier than it looked. For the first two subgroups it was
enough to use regular double arithmetic, as long as the output was printed
with enough decimals (e.g. in C++ cout << setprecision(10) << fixed

was helpful).
For the other test groups, however, this is not enough. Doubles only have

53 bits of precision (plus a 11-bit exponent), and we would need more than 60
bits just to be able to perfectly represent all integers up to 1018.

80-bit doubles (i.e. long longs in C++), however, use 64 bits for the man-
tissa, which means that they can exactly represent any integer up to 264, which
is sufficient to completely solve group 3. Group 3 could also be solved by using
64-bit integers when c = 1.

Unfortunately, long doubles are still not enough for group 4, because the
answer is not necessarily an integer. One work-around would be to use Python’s
or Java’s arbitrary precision arithmetic. However, that’s a bit boring. A more
hands-on solution which just uses plain integers/doubles (and thus works in
C++/Pascal) is to compute the integer part and the fractional part separately.
In other words, you can compute the integer part of (a·b)/c using 64-bit integers,
and you can compute the fractional part as ((a · b)%c)/c, which gives you an
absolute precision of 10−15, far better than needed. Example C++ solution:

int main() {

long long a, b, c;

cin >> a >> b >> c;

long long ab = a * b;

if (ab >= 10*c) {

cout << ab / (10*c);

ab %= 10*c;

}

cout << setprecision(18) << fixed << (long double)ab / c << endl;

}

B. Citations

We start by computing for each book b the time it takes to read it and all books
in its subtree (b.time), and the number of books in that tree (b.size). Then,
we will assign to each book a penalty b.pen, which is the contribution to the
final answer of this book’s subtree assuming we start reading it at time T = 0.

If we instead started reading it at another time T, the contribution would
be b.pen + T · b.size. The term b.pen is independent of T, and hence we can
solve the problem for all books independently, ignoring their starting times.

To solve the problem for a given book, we need to find an order in which
to read its children. There are several conceivable ways of doing this (try-
ing all permutations, DP), but it turns out that it’s possible to do it greed-

1



ily: we simply sort all children by increasing b.time / b.size. A swap-
ping argument shows that this indeed minimizes the sum over all children of
(sum of b.time of previous books) ∗ b.size.

C. Ninety-nine

There is a simple winning strategy for the second player in this game: regardless
of what your opponent says, you can always say the numbers 3, 6, 9, . . . , 99,
and win. The only problem is, you’re not the second player.

What we’ll need to do, then, is to exploit the fact that the first player is
not playing optimally. One option is to play randomly, and if the opponent
ever slips up and deviates from the optimal strategy, we can say a multiple of
3 and continue as if we were the second player. This succeeds with probability
1 − 2−33.

2


